Pearson Edexcel

Level 1/Level 2

GCSE (9-1) in Mathematics (1MA1)

A Teacher's Guide To

Command Words

Introduction

This document provides some guidance around the use of command words in GCSE (9-1) Mathematics. This includes a table of command words with come commentary around what is expected from students when this command word is used and a few examples of exam questions to exemplify its use.

Where useful, examples have been used to further exemplify the use of the command word.

Please note that the command word table does not include an exhaustive list but uses the most commonly used command words.

Note: once you have clicked on an example from the main command words table on page 3, click the Return to command word table link to then return to the command words table.

GCSE Maths - Command words table - Teacher guide

Please note that this table is not exhaustive but uses the most commonly used command words.

Co	mand words	What you need to know	Examples
1	Calculate	A calculator and some working will be needed.	Example 1 Example 2 Example 3
2	Change	Usually convert from one unit to another; either using known metric unit conversions or the use of a conversion graph.	Example 1 Example 2 Example 3
3	Complete	Fill in missing values. For example, on a probability tree diagram or a table of values.	
4	Describe	Write a sentence that gives the features of the situation. For example, describing a transformation or trend in a graph.	Example 1 Example 2 Example 3
5	Draw	Produce an accurate drawing (unless a sketch is being drawn). For example, draw a graph, draw an accurate elevation of a pyramid.	Example 1 Example 2 Example 3
6	Draw a sketch of... Sketch	Produce a drawing that does not have to be drawn to scale or a graph that is drawn without working out each coordinate. For example, sketch a graph, sketch a cylinder.	Example 1 Example 2 Example 3
7	Expand	Remove brackets.	Example 1
8	Expand and simplify	Remove brackets and the collect like terms.	Example 1 Example 2 Example 3
9	Explain	Write a sentence or a mathematical statement to show how you got to your answer or reached your conclusion.	Example 1 Example 2 Example 3
10	Express	Re-write in another form, some working may be needed.	Example 1 Example 2 Example 2
11	Factorise	Insert brackets by taking out common factors.	Example 1 Example 2 Example 3

Command words		What you need to know	Examples
12	Factorise fully	Insert brackets by taking out all the common factors.	Example 1 Example 2 Example 3
13	Find	Some working will be needed to get to the final answer.	Example 1 Example 2 Example 3
14	Give a reason	Must be clear and accurate reasons. If the reasons are geometrical then make sure you: - provide a reason for each stage of working (if required), - use correct geometric terminology.	Example 1 Example 2 Example 3
15	Justify	Show all working and/or give a written explanation.	$\begin{aligned} & \hline \text { Example } 1 \\ & \text { Example } 2 \\ & \text { Example } 3 \\ & \hline \end{aligned}$
16	Prove	More formal than 'show', all steps must be present. In the case of a geometrical proof, reasons must be given.	Example 1 Example 2 Example 3
17	Prove algebraically	Use algebra in the proof.	Example 1 Example 2 Example 3
18	Show	All working needed to get to a given answer or complete a diagram to show given information.	Example 1 Example 2 Example 3
19	Simplify	Simplify the given expression	Example 1 Example 2 Example 3
20	Simplify fully	Simplify the given expression. Answer must be given in its simplest form.	Example 1 Example 2
21	Solve	Find the solution of an equation or inequality.	Example 1 Example 2 Example 3
22	Solve algebraically	Find the solution of an equation or inequality; algebraic manipulation must be shown.	$\begin{aligned} & \text { Example } 1 \\ & \hline \text { Example } 2 \\ & \hline \end{aligned}$
23	Write down	No working is needed.	Example 1 Example 2 Example 3
24	Write	No working needed for 1 mark questions. Working may be needed questions with more than 1 mark.	Example 1 Example 2 Example 3
25	Work out	Some working will be needed in order to get the answer.	Example 1 Example 2 Example 3

GCSE Maths - Command Words - Teacher guide

Command words		What you need to know	Examples
$\mathbf{1}$	Calculate	A calculator and some working will be needed.	$\frac{\text { Example 1 }}{\frac{\text { Example 2 }}{\text { Example 3 }}}$

Calculate - Example 1

Return to command word table
June 2017 - Paper 3H
$7 \quad A B C$ is a right-angled triangle.

Calculate the length of $A B$.
Give your answer correct to 3 significant figures.

June 2017 - Paper 2H
17

$O N Q$ is a sector of a circle with centre O and radius 11 cm .
A is the point on $O N$ and B is the point on $O Q$ such that $A O B$ is an equilateral triangle of side 7 cm .

Calculate the area of the shaded region as a percentage of the area of the sector ONQ. Give your answer correct to 1 decimal place.
\qquad \%

Calculate - Example 3

Nov 2018 - Paper 2H
20 Here is a frustum of a cone.

The diagram shows that the frustum is made by removing a cone with height 3.2 cm from a solid cone with height 6.4 cm and base diameter 7.2 cm .
The frustum is joined to a solid hemisphere of diameter 7.2 cm to form the solid \mathbf{S} shown below.

The density of the frustum is $2.4 \mathrm{~g} / \mathrm{cm}^{3}$
The density of the hemisphere is $4.8 \mathrm{~g} / \mathrm{cm}^{3}$
Calculate the average density of solid \mathbf{S}.

Command words		What you need to know	Examples
$\mathbf{2}$	Change	Usually convert from one unit to another, either using known metric unit conversions or the use of a conversion graph.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{\text { Example 2 }}}$			
$\underline{\text { Example 3 }}$			

Change - Example 1

5 (a) Change 35 cm to mm .
\qquad
(b) Change 7700 millilitres to litres.
\qquad
(c) Change 0.32 kilograms to grams.
\qquad

Change - Example 2
Nov 2018 - Paper 1F
1 (a) Change 365 cm into metres.
\qquad
(b) Change 2.7 kg into grams.

Change - Example 3

11 You can use this graph to change between inches and centimetres.

(a) Change 74 cm to inches.
\qquad inches

Command words		What you need to know	Examples
3	Complete	Fill in missing values.	Examp
		For example, on a probability tree diagram or a table of values.	Example 2 Example 3

Complete - Example 1

Return to command word table
Nov 2018 - Paper 2H
$1 \mathscr{\delta}=\{$ even numbers between 1 and 25$\}$
$A=\{2,8,10,14\}$
$B=\{6,8,20\}$
$C=\{8,18,20,22\}$
(a) Complete the Venn diagram for this information.

Complete - Example 2

Return to command word table
Nov 2018 - 3H
3 (a) Complete this table of values for $y=x^{2}+x-4$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}		-2	-4		-2		

Complete - Example 3

Nov 2017 - Paper 2F
560 students were asked how they get to school.
The table shows the results.

	Bus	Walk	Car	Bicycle
Number of students	15	27	12	6

(a) What fraction of the 60 students did not walk to school?
\qquad
(b) Complete the pie chart for the information in the table.

Command words		What you need to know	Examples
4	Describe	Write a sentence that gives the features of the situation.	Example 1
	For example, describing a transformation or trend in a graph.	$\frac{\text { Example 2 }}{\text { Example 3 }}$	

Describe - Example 1
Return to command word table
June 2018 - Paper 1H

Shape \mathbf{T} is reflected in the line $x=-1$ to give shape \mathbf{R}.
Shape \mathbf{R} is reflected in the line $y=-2$ to give shape \mathbf{S}.
Describe the single transformation that will map shape \mathbf{T} to shape \mathbf{S}.
\qquad
\qquad

Describe - Example 2
June 2018 - Paper 1F
$18 A=\{$ multiples of 5 between 14 and 26\}
$B=\{$ odd numbers between 14 and 26\}
(a) List the members of $A \cup B$
\qquad
(b) Describe the members of $A \cap B$

Describe - Example 3
Nov 2017 - Paper 2F
8 Chrissy drew this graph to show the percentage of buses that got to a bus stop on time for six months.

(a) Write down one thing that is wrong with the graph.
\qquad
\qquad
(b) Describe the trend in the percentage of buses that got to the bus stop on time.
\qquad

Command words		What you need to know	Examples		
$\mathbf{5}$	Draw	Produce an accurate drawing (unless a sketch is being drawn).	For example, draw a graph, draw an accurate elevation of a pyramid.		$\frac{\text { Example } 1}{\frac{\text { Example 2 }}{\text { Example } 3}}$
:---					

Draw - Example 1
Return to command word table June 2018 - Paper 2H
16 (a) On the grid, draw the graph of $x^{2}+y^{2}=12.25$

Draw - Example 2
Nov 2017 - Paper 3F
19 The table shows information about the heights of 80 children.

Height $(\boldsymbol{h} \mathbf{~ c m})$	Frequency
$130<h \leqslant 140$	4
$140<h \leqslant 150$	11
$150<h \leqslant 160$	24
$160<h \leqslant 170$	22
$170<h \leqslant 180$	19

(a) Find the class interval that contains the median.
\qquad
(b) Draw a frequency polygon for the information in the table.

Draw - Example 3
June 2018 - Paper 1F
23 Here is a solid square-based pyramid, $V A B C D$.

The base of the pyramid is a square of side 6 cm .
The height of the pyramid is 4 cm .
M is the midpoint of $B C$ and $V M=5 \mathrm{~cm}$.
(a) Draw an accurate front elevation of the pyramid from the direction of the arrow.

Command words	What you need to know	Examples	
$\mathbf{6}$	Draw a sketch of... Sketch	Produce a drawing that does not have to be drawn to scale or a graph that is drawn without working out each coordinate.	For example, sketch a graph, sketch a cylinder.
$\frac{\text { Example 1 }}{}$ Example 2 Example 3			

Sketch - Example 1

Return to command word table
June 2018 - Paper 1H
18 Here is the graph of $y=\sin x^{\circ}$ for $-180 \leqslant x \leqslant 180$

On the grid, sketch the graph of $y=\sin x^{\circ}-2 \quad$ for $\quad-180 \leqslant x \leqslant 180$

Sketch - Example 2
Nov 2018 - Paper 2H
14 On the grid, sketch the curve with equation $y=2^{x}$
Give the coordinates of any points of intersection with the axes.

Sketch - Example 3
Nov 2018 - Paper 3H
11 Sketch the graph of $y=\tan x^{\circ}$ for $0 \leqslant x \leqslant 360$

Command words		What you need to know	Examples
7	Expand	Remove brackets.	Example 1

Expand - Example 1
Return to command word table
June 2018 - Paper 1F
16(b) Expand $4 e(e+2)$

Command words		What you need to know	Examples
$\mathbf{8}$	Expand and simplify	Remove brackets and the collect like terms.	$\frac{\text { Example 1 }}{\frac{\text { Example 2 }}{}}$

Expand and simplify - Example 1 Return to command word table June 2018 - Paper 3H

Expand and simplify
$5(p+3)-2(1-2 p)$

Expand and simplify - Example 2 Return to command word table Nov 2018 - Paper 2F
(a) Expand and simplify $(5 x+2)(2 x-3)$
\qquad

Expand and simplify - Example 3 Return to command word table
Nov 2018 - Paper 3H
(a) Expand and simplify $(x-2)(2 x+3)(x+1)$

Command words		What you need to know	Examples
9	Explain	Write a sentence or a mathematical statement to show how you got to your answer or reached your conclusion.	$\underline{\underline{\text { Example 1 }}}$ $\underline{\underline{\text { Example 2 }}}$ $\underline{\text { Example 3 }}$

Explain - Example 1

Return to command word table
Nov 2018 - Paper 2F
14 Victoria throws an ordinary fair 6-sided dice once.
She says,
"The probability of getting a 3 is half the probability of getting a 6 "
(a) Is Victoria correct?

You must explain your answer.
\qquad
\qquad

Andy throws the dice twice.
He says,
"The probability of getting a 6 on both throws is $\frac{\mathbf{2}}{\mathbf{6}}$ "
(b) Is Andy correct?

You must explain your answer.
\qquad
\qquad

Explain - Example 2
June 2018 - Paper 3F
15 Jenny is asked to find the value of $12-2 \times 4$
Here is her working.

$$
12-2 \times 4=10 \times 4=40
$$

Jenny's answer is wrong.
(a) Explain what Jenny has done wrong.
\qquad
\qquad
$\begin{array}{lllllll}\text { Rehan is asked to find the range of the numbers } & 3 & 1 & 8 & 7 & 5\end{array}$
Here is his working.

$$
\text { Range }=5-3=2
$$

This is wrong.
(b) Explain why.
\qquad
\qquad

Explain - Example 3
June 2018 - Paper 3H
12 The graph shows the volume of liquid (L litres) in a container at time t seconds.

(a) Find the gradient of the graph.
(b) Explain what this gradient represents.
\qquad
\qquad

The graph intersects the volume axis at $L=4$
(c) Explain what this intercept represents.
\qquad
\qquad

Command words		What you need to know	Examples
$\mathbf{1 0}$	Express	Re-write in another form, some working may be needed.	Example 1 Example 2 Example 2

Express - Example 1
Return to command word table
Nov 2017 - Paper 2F
11 The table shows a cricket club's income in 2016 from a fete, a quiz and membership fees.

	Income		
Fete	$£ 250$		
Quiz	Entry fees Refreshments	13 at	$£ 5$ each
		25 at	$£ 20$
Membership fees			

Express as a ratio
the income from the fete to the income from the quiz to the income from membership fees.

Give your ratio in its simplest form.

Express - Example 2

2 Express 56 as the product of its prime factors.

12 (b) Express $\frac{3}{x+1}+\frac{1}{x-2}-\frac{4}{x}$ as a single fraction in its simplest form.

Command words		What you need to know	Examples
$\mathbf{1 1}$	Factorise	Insert brackets by taking out common factors.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{\text { Example 2 }}}$			

Factorise - Example 1
Return to command word table
Nov 2017 - Paper 2F
24 (c) Factorise $x^{2}+6 x+9$

Factorise - Example 2
June 2017 - Paper 2F
14 (a) Factorise $5-10 m$

Factorise - Example 3

Command words		What you need to know	Examples
$\mathbf{1 2}$	Factorise fully	Insert brackets by taking out all the common factors.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{\text { Example 2 }}}$			

Factorise fully - Example 1
Nov 2018- Paper 1H
(b) Factorise fully $50-2 y^{2}$

Factorise fully - Example 2
(b) Factorise fully $9 b-3 b^{2}$
\qquad

Factorise fully - Example 3
Return to command word table June 2017 - Paper 2F
14 (b) Factorise fully $2 a^{2} b+6 a b^{2}$
\qquad

Command words		What you need to know	Examples
$\mathbf{1 3}$	Find	Some working will be needed to get to the final answer.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{E x a m p l e ~ 2 ~}}$			
$\underline{\underline{E x a m p l e} 3}$			

Find - Example 1

Return to command word table
Nov 2018 - Paper 2F
13 A square has an area of $81 \mathrm{~cm}^{2}$

(a) Find the perimeter of the square.

The diagram shows a right-angled triangle and a parallelogram.

The area of the parallelogram is 5 times the area of the triangle.
The perpendicular height of the parallelogram is $h \mathrm{~cm}$.
(b) Find the value of h.

$$
h=.
$$

June 2017 - Paper 1F

$A B C D$ is a parallelogram.
The diagonals of the parallelogram intersect at O.

$$
\overrightarrow{O A}=\mathbf{a} \text { and } \overrightarrow{O B}=\mathbf{b}
$$

(a) Find, in terms of \mathbf{b}, the vector $\overrightarrow{D B}$.
(b) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A B}$.
\qquad
(c) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A D}$.
\qquad

Find - Example 3
Nov 2018 - Paper 1H
17 Here is a sketch of a curve.

The equation of the curve is $y=x^{2}+a x+b$ where a and b are integers.
The points $(0,-5)$ and $(5,0)$ lie on the curve.
Find the coordinates of the turning point of the curve.
\qquad
\qquad
..)

Command words		What you need to know	Examples
$\mathbf{1 4}$	Give a reason	$\begin{array}{l}\text { Must be clear and accurate reasons. If the reasons are } \\ \text { geometrical then make sure you: } \\ \text { - provide a reason for each stage of working (if } \\ \text { required), } \\ \text { - use correct geometric terminology. }\end{array}$	$\begin{array}{\|l}\underline{\text { Example 1 }}\end{array}$
$\underline{E x a m p l e ~ 2 ~}$			

Give a reason - Example 1

Return to command word table
June 2017 - Paper 1F
18 Balena has a garden in the shape of a circle of radius 10 m . He is going to cover the garden with grass seed to make a lawn.

Grass seed is sold in boxes.
Each box of grass seed will cover $46 \mathrm{~m}^{2}$ of garden.
Balena wants to cover all the garden with grass seed.

(a) Work out an estimate for the number of boxes of grass seed Balena needs.

You must show your working.
(b) Is your estimate for part (a) an underestimate or an overestimate?

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

Give a reason - Example 2
Nov 2018- Paper 1H
9 The times that 48 trains left a station on Monday were recorded.
The cumulative frequency graph gives information about the numbers of minutes the trains were delayed, correct to the nearest minute.

The shortest delay was 0 minutes.
The longest delay was 42 minutes.
(a) On the grid below, draw a box plot for the information about the delays on Monday.

48 trains left the station on Tuesday.
The box plot below gives information about the delays on Tuesday.

(b) Compare the distribution of the delays on Monday with the distribution of the delays on Tuesday.
\qquad
\qquad
\qquad
\qquad

Mary says,
"The longest delay on Tuesday was 33 minutes.
This means that there must be some delays of between 25 minutes and 30 minutes."
(c) Is Mary right?

You must give a reason for your answer.
\qquad
\qquad

Give a reason - Example 3
June 2018- Paper 3H
15 The graph shows the speed of a car, in metres per second, during the first 20 seconds of a journey.

(a) Work out an estimate for the distance the car travelled in the first 20 seconds.

Use 4 strips of equal width.
\qquad metres
(b) Is your answer to part (a) an underestimate or an overestimate of the actual distance the car travelled in the first 20 seconds?
Give a reason for your answer.
\qquad
\qquad

Command words		What you need to know	Examples
$\mathbf{1 5}$	Justify	Show all working and/or give a written explanation.	$\frac{\text { Example 1 }}{\frac{\text { Example 2 }}{\text { Example 3 }}}$

Justify - Example 1

Return to command word table

Nov 2017 - Paper 1H

5 The table shows information about the weekly earnings of 20 people who work in a shop.

Weekly earnings (£x)	Frequency
$150<x \leqslant 250$	1
$250<x \leqslant 350$	11
$350<x \leqslant 450$	5
$450<x \leqslant 550$	0
$550<x \leqslant 650$	3

(a) Work out an estimate for the mean of the weekly earnings.
\qquad

Nadiya says,
"The mean may not be the best average to use to represent this information."
(b) Do you agree with Nadiya?

You must justify your answer.
\qquad
\qquad

Justify - Example 2
Nov 2017 - Paper 2F
4 Ken buys some fruit.
He buys apples, bananas, peaches and oranges.
Ken buys

4 apples	weighing 125 g each
2 bananas	weighing 170 g each
3 peaches	weighing 135 g each

Each orange has a weight of 90 g .
The fruit has a total weight of 1.785 kg .
(a) Work out how many oranges Ken buys.

Jane wants to buy 15 tomatoes.
She asks for 1 kg of tomatoes at a shop.
Jane assumes that each tomato has a weight of 75 g .
(b) (i) If Jane's assumption is correct, will she get 15 tomatoes?

You must show how you get your answer.
(ii) If Jane's assumption is not correct, could she get 15 tomatoes?

Justify your answer.
\qquad
\qquad

Justify - Example 3
Nov 2017 - Paper 2F
12 A shop sells desktop computers, laptops and tablets.
The composite bar chart shows information about sales over the last three years.

Key:	
\square	desktop computers
\square	laptops
\square	tablets

(a) Write down the number of desktop computers sold in 2015
\qquad
(b) Work out the total number of laptops sold in the 3 years.
\qquad
(c) State the item that had the greatest increase in sales over the 3 years.

Give a reason for your answer.
\qquad
\qquad

Alex says,
"In 2017, more tablets were sold than desktop computers. This means the shop makes more profit from the sale of tablets than from the sale of desktop computers."
(d) Is Alex correct?

You must justify your answer.
\qquad
\qquad
\qquad

Command words		What you need to know	Examples
$\mathbf{1 6}$	Prove	More formal than 'show', all steps must be present. In the case of a geometrical proof, reasons must be given.	$\underline{\text { Example 1 }}$ $\underline{\text { Example 2 }}$ $\underline{\text { Example 3 }}$

Prove - Example 1

Return to command word table
Nov 2017 - Paper 3H

A, B and C are points on the circumference of a circle, centre O.
$A O B$ is a diameter of the circle.
Prove that angle $A C B$ is 90°
You must not use any circle theorems in your proof.

$A B C D$ is a parallelogram.
$A B P$ and $Q D C$ are straight lines.
Angle $A D P=$ angle $C B Q=90^{\circ}$
(a) Prove that triangle $A D P$ is congruent to triangle $C B Q$.

Prove - Example 3
June 2017 - Paper 2H
$15 A, B, C$ and D are four points on the circumference of a circle.

$A E C$ and $B E D$ are straight lines.
Prove that triangle $A B E$ and triangle $D C E$ are similar.
You must give reasons for each stage of your working.

Command words		What you need to know	Examples
$\mathbf{1 7}$	Prove algebraically	Use algebra in the proof.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{E x a m p l e ~ 2 ~}}$			

Prove algebraically - Example 1 Return to command word table June 2017- Paper 1H

$16 \quad n$ is an integer greater than 1
Prove algebraically that $\quad n^{2}-2-(n-2)^{2} \quad$ is always an even number.

15 Prove algebraically that the difference between the squares of any two consecutive odd numbers is always a multiple of 8

Prove algebraically - Example 3
$x=0.4 \dot{3} \dot{6}$
Prove algebraically that x can be written as $\frac{24}{55}$

Command words		What you need to know	Examples
$\mathbf{1 8}$	Show	All working needed to get to a given answer or complete a diagram to show given information.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{\text { Example 2 }}}$			
$\underline{\underline{\text { Example 3 }}}$			

Show - Example 1

Return to command word table

Nov 2017- Paper 1H

$A B C D$ is a parallelogram.
$E D C$ is a straight line.
F is the point on $A D$ so that $B F E$ is a straight line.
Angle $E F D=35^{\circ}$
Angle $D C B=75^{\circ}$
Show that angle $A B F=70^{\circ}$
Give a reason for each stage of your working.

14 Here are the marks 20 students got in a French test.

76	82	84	69	80	64	70	81	75	91
87	67	80	70	94	76	81	69	71	77

(a) Show this information in a stem and leaf diagram.

18 (a) Show that the equation $x^{3}+x=7$ has a solution between 1 and 2.
(b) Show that the equation $x^{3}+x=7$ can be rearranged to give $x=\sqrt[3]{7-x}$

Command words		What you need to know	Examples
$\mathbf{1 9}$	Simplify...	Simplify the given expression.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{\text { Example 2 }}}$			

Simplify - Example 1
Nov 2017- Paper 3F
2 Simplify $y+3 y-2 y$

Simplify - Example $2 \quad$ Return to command word table
June 2018- Paper 2H
(a) Simplify $m^{3} \times m^{4}$
\qquad
(b) Simplify $\left(5 n p^{3}\right)^{3}$
\qquad
(c) Simplify $\frac{32 q^{9} r^{4}}{4 q^{3} r}$

Return to command word table

Return to
\qquad

Simplify - Example 3
Nov 2018 - Paper 2F
(a) Simplify $3 m-m-m+3 m$
\qquad
(b) Simplify $2 \times n \times p \times 4$
\qquad

Command words		What you need to know	Examples
$\mathbf{2 0}$	Simplify fully...	Simplify the given expression. Answer must be given in its simplest form.	Example 1 Example 2

Simplify fully - Example 1

Return to command word table
Nov 2018 - Paper 1H
17 Simplify fully $\frac{3 x^{2}-8 x-3}{2 x^{2}-6 x}$

15 (a) Factorise $a^{2}-b^{2}$
\qquad
(b) Hence, or otherwise, simplify fully $\left(x^{2}+4\right)^{2}-\left(x^{2}-2\right)^{2}$

Command words		What you need to know	Examples
21	Solve	Find the solution of an equation or inequality.	$\frac{\text { Example 1 }}{\frac{\text { Example 2 }}{}}$

Solve - Example 1
Return to command word table
June 2018 - Paper 3H
7 Solve $\frac{5-x}{2}=2 x-7$

$$
x=
$$

\qquad

Solve - Example 2
Return to command word table
Nov 2018 - Paper 3H
11 (a) Solve $x+x+x=51$

$$
x=
$$

\qquad
(b) Solve $\frac{\boldsymbol{y}}{\boldsymbol{4}}=3$

$$
y=
$$

(c) Solve $2 f+7=18$
\qquad

$$
\begin{equation*}
f= \tag{1}
\end{equation*}
$$

Solve - Example 3
Nov 2018 - Paper 3H

9
(c) Solve $5 x^{2}-4 x-3=0$

Give your solutions correct to 3 significant figures.

Command words		What you need to know	Examples
$\mathbf{2 2}$	Solve algebraically	Find the solution of an equation or inequality; algebraic manipulation must be shown.	Example 1 Example 2

Solve algebraically - Example $1 \quad$ Return to command word table
 Nov 2018 - Paper 3H

19 Solve algebraically the simultaneous equations

$$
\begin{aligned}
2 x^{2}-y^{2} & =17 \\
x+2 y & =1
\end{aligned}
$$

Solve algebraically - Example $2 \quad$ Return to command word table June 2017-1H

20 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& y-3 x=13
\end{aligned}
$$

Command words		What you need to know	Examples
23	Write	No working is needed.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{E x a m p l e ~ 2 ~}}$			
$\underline{E x a m p l e ~ 3 ~}$			

Write - Example 1

June 2018 - Paper 1F

Return to command word table

(a) Write the following numbers in order of size.

Start with the smallest number.
-6
6
-5
0 12
(b) Write the following numbers in order of size.

Start with the smallest number.
0.078
0.78
0.87
0.708
\qquad

Write - Example 2

Return to command word table
Nov 2018 - Paper 2F
6 Here are four fractions.

$$
\begin{array}{llll}
\frac{3}{4} & \frac{5}{7} & \frac{19}{25} & \frac{11}{15}
\end{array}
$$

Write the fractions in order of size.
Start with the smallest fraction.

Write - Example 3

Nov 2017 - Paper 1H
$1 \quad$ Write 36 as a product of its prime factors.

Command words		What you need to know	Examples
$\mathbf{2 4}$	Write down	No working needed for 1 mark questions. Working may be needed questions with more than 1 mark.	$\underline{\underline{\text { Example 1 }}}$
$\underline{\underline{\text { Example 2 }}}$			
$\underline{\text { Example 3 }}$			

Write down- Example 1

Return to command word table
June 2018 - Paper 2F
4 Write down a 6 digit number that has 4 as its thousands digit.
You can only use the digit 4 once.

Write down- Example 2

Nov 2018 - Paper 2H
2 Sean has information about the height, in cm , and the weight, in kg , of each of ten rugby players.
He is asked to draw a scatter graph and a line of best fit for this information.
Here is his answer.

Sean has plotted the points accurately.
Write down two things that are wrong with his answer.

1. \qquad
\qquad
2. \qquad
\qquad
(Total for Question 2 is $\mathbf{2}$ marks)

Write down- Example 3

Nov 2017 - Paper 2H
18 At time $t=0$ hours a tank is full of water.
Water leaks from the tank.
At the end of every hour there is 2% less water in the tank than at the start of the hour.
The volume of water, in litres, in the tank at time t hours is V_{t}
Given that

$$
\begin{aligned}
& V_{0}=2000 \\
& V_{t+1}=k V_{t}
\end{aligned}
$$

write down the value of k.

Command words		What you need to know	Examples
$\mathbf{2 5}$	Work out	Some working will be needed in order to get the answer.	Example 1 $\frac{\text { Example 2 }}{}$

Work out - Example 1

Return to command word table
Nov 2017 - Paper 2H
2 Emily buys a pack of 12 bottles of water.
The pack costs $£ 5.64$.
Emily sells all 12 bottles for 50 p each.
Work out Emily's percentage profit.
Give your answer correct to 1 decimal place.

Work out - Example 3

Nov 2018 - Paper 2F
$25 \quad A$ is the point with coordinates $(5,9)$
B is the point with coordinates $(d, 15)$
The gradient of the line $A B$ is 3
Work out the value of d.

